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Abstract. The climate regime shift during the 1980s had a substantial impact on the terrestrial ecosystems and vegetation at 10 

different scales. However, the mechanisms driving vegetation changes, before and after the shift, remain unclear. In this 

study, we used a biophysical-dynamic vegetation model to estimate large-scale trends in terms of carbon fixation, vegetation 

growth and expansion during the period 1958-2007, and to attribute these changes to environmental drivers including 

elevated atmospheric CO2 concentration (hereafter eCO2), global warming, and climate variability (hereafter CV). Simulated 

Leaf Area Index (LAI) and Gross Primary Product (GPP) were evaluated against observation-based data. Significant spatial 15 

correlations are found (correlations>0.87), along with regionally varying temporal correlations of 0.34-0.80 for LAI and 

0.45-0.83 for GPP. 

More than 40% of the global land area shows significant trends in LAI and GPP since the 1950s: 11.7% and 19.3% 

of land has consistently positive LAI and GPP trends, respectively; while 17.1% and 20.1% of land, saw LAI and GPP trends 

respectively, reverse during the 1980s. Vegetation fraction cover (FRAC) trends, representing vegetation 20 

expansion/shrinking, are found at the edges of semi-arid areas and polar areas. 

Overall, eCO2 consistently contributes to positive LAI and GPP trends in the tropics. Global warming is shown to 

mostly affected LAI, with positive effects in high latitudes and negative effects in subtropical semi-arid areas. CV is found to 

dominate the variability of FRAC, LAI, and GPP in the semi-humid and semi-arid areas. The eCO2 and global warming 

effects increased after the 1980s, while the CV effect reversed during the 1980s. In addition, plant competition is shown to 25 

have played an important role in determining which driver dominated the regional trends. This paper presents a new insight 

into ecosystem variability and changes in the varying climate since the 1950s. 
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1 Introduction 

Climate variability and change, including global warming, and elevated atmospheric CO2 concentrations (referred to as eCO2 

in this paper), have profound impacts on the terrestrial biosphere at global and regional scales (e.g. Garcia et al., 2014); 

while the terrestrial biosphere, in turn, affects the global climate by altering fluxes exchanges, energy balance, carbon cycle, 

etc. (e.g. Cox et al., 2000;Xue et al., 2004;Xue et al., 2010;Ma et al., 2013;Friedlingstein et al., 2006).  Important trends in 5 

terrestrial ecosystem carbon fixation, growth, and expansion in the past 60 years have been detected. For instance, general 

earth greening has been discovered by analyzing satellite-derived Normalized Difference Vegetation Index (NDVI) (Myneni 

et al., 1997;Ichii et al., 2013;Los, 2013;Piao et al., 2011) and Leaf Area Index (LAI, defined as the one-side leaf area in a 

unit area) products (Piao et al., 2011;Piao et al., 2015;Zhu et al., 2016). The Earth’s terrestrial vegetation has acted as an 

important carbon sink in the past 60 years (Ballantyne et al., 2012;Le Quéré et al., 2013), with a significantly increasing rate 10 

after the 1980s (Sitch et al., 2015), revealing growth in plant productivity (Nemani et al., 2003;Anav et al., 2015). In the 

meantime, vegetation fractional coverage (hereafter FRAC) has been changing, including some large-scale increases in total 

vegetation cover (e.g. Piao et al., 2005;Donohue et al., 2009;McDowell et al., 2015), and shifts in the spatial distributions of 

plants species, such as woody plants encroachment in the savanna area (Stevens et al., 2017) and shrubification in the tundra 

biome (Epstein et al., 2012;Mod and Luoto, 2016).  15 

Many studies have attributed these large-scale ecosystem trends to climatic drivers and eCO2 after applying 

statistical methods to satellite-based observations or the results from process-based land surface models (e.g. Myneni et al., 

1997;Liu et al., 2006;Ichii et al., 2013;Piao et al., 2015;Schimel et al., 2015;Sitch et al., 2015;Devaraju et al., 2016;Zhu et al., 

2016;Smith et al., 2016;Mao et al., 2013). Statistical regression and cross-correlation have been applied to attribute the 

recent biosphere changes to precipitation, temperature, and solar radiation variability (e.g. Zeng et al., 2013;Myers-Smith et 20 

al., 2015). Results from these studies indicated that northern mid- to high- latitude NDVI anomalies were positively 

correlated with temperature, and positively associated with precipitation in temperate to tropical semi-arid and arid regions 

(Zeng et al., 2013). However, statistical methods rarely isolate the drivers’ contribution to the inter-annual or decadal 

variability of the terrestrial ecosystem (e.g. Ahlbeck, 2002;Piao et al., 2015). Moreover, the satellite products only cover the 

period after 1980.  25 

Process-based land surface models overcome these limitations and are also able to include CO2 as an external 

driver. Dynamic Global Vegetation Models (DGVMs) predict vegetation cover changes in response to changes in climate 

and CO2, and update associated surface characteristics (Smith et al., 2001;Bonan et al., 2002;Sitch et al., 2003;Woodward 

and Lomas, 2004;Krinner et al., 2005;Zeng et al., 2005;Zaehle and Friend, 2010;Lawrence et al., 2011;Zhang et al., 

2015;Claussen and Gayler, 1997). By applying DGVMs, a general consensus has been reached that eCO2 explains the 30 

greater part of the increasing trend of LAI and GPP since the later 1980s. Air temperature, precipitation, land use and land 

cover change, and nitrogen decomposition, also play roles in the changing terrestrial biosphere (e.g. Cramer et al., 

2001;Schimel et al., 2015;Zhu et al., 2016). However, DGVMs should be applied with caution. The Coupled Model 
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Intercomparison Project Phase 5 (CMIP5) reported that most DGVMs overestimated LAI in comparison to Global Inventory 

Monitoring and Modeling System (GIMMS) data (Murray-Tortarolo et al., 2013;Zhu et al., 2013). In addition, large 

discrepancies between models were found when predicting ecosystem variability and trends (Piao et al., 2013;Zhu et al., 

2017). Unsurprisingly, the dominant factors obtained from different models are often significantly different (Beer et al., 

2010;Huntzinger et al., 2017). Furthermore, DGVM simulations were sensitive to meteorological forcing data (Slevin et al., 5 

2017;Wu et al., 2017). Therefore, a comprehensive evaluation of large-scale terrestrial ecosystem vegetation trends and 

potential drivers is crucial for improved DGVM application. 

Most ecosystem trend detection and attribution studies have focused on the period after the 1980s when satellite 

data has been available. However, a climate regime shift, identified by abrupt shifts in temperature, precipitation, and other 

external forcing, was observed during the 1980s (e.g. Gong and Ho, 2002;Lo and Hsu, 2010;Reid et al., 2016). The 10 

responses of vegetation to these climate shifts have not yet been comprehensively investigated, especially at the level of 

individual Plant Function Types (PFTs). 

In this study, we investigate the effect of eCO2 and climate drivers including global warming and climate variability 

(meteorological forcing excluding global warming, referred to as “CV”) on the trends of FRAC, LAI, and GPP during the 

period 1958-2007 by applying a dynamic global vegetation model (Simplified Simple Biosphere model version 4/Top-down 15 

Representation of Interactive Foliage and Flora Including Dynamics, SSiB4/TRIFFID, Xue et al., 1991; Cox, 2001; Zhan et 

al., 2003; Zhang et al., 2015; Harper et al., 2016) at both grid and PFT levels, and using satellite products whenever they are 

available. Changes in the ecosystem trends are attributed to changes in eCO2 and climate effects, focusing particularly on the 

climate regime shift during the 1980s. The model and data description are presented in section 2. In section 3, we show 

results of a quasi-equilibrium simulation, which is used to produce the initial condition for the subsequent long-term 20 

simulation. In section 4, the model performance in reproducing the spatial distribution and temporal evolution of vegetation 

variables are evaluated using satellite products. Finally, the paper delineates the linear trend of FRAC, LAI, and GPP 

before/after the 1980s and quantifies the contribution of different environmental drivers. 

2. Model description, observational datasets, and experimental design 

2.1 Brief description of SSiB4/TRIFFID 25 

The Simplified Simple Biosphere model (SSiB) is a biophysically based model incorporating estimates fluxes of radiation, 

momentum, sensible heat, and latent heat, as well as runoff, soil moisture, and surface temperature (Xue et al., 1991). A 

photosynthesis model (Collatz et al., 1991;Collatz et al., 1992) has been implemented into SSiB to calculate carbon 

assimilation, forming SSiB2 (Zhan et al., 2003). The Top-down Representation of Interactive Foliage and Flora Including 

Dynamics (TRIFFID) (Cox, 2001;Harper et al., 2016) was subsequently coupled with SSiB version 4 to calculate vegetation 30 

dynamics, including relevant land-surface characteristics of vegetation cover and structure  (Xue et al., 2006), called 

SSiB4/TRIFFID. Zhang et al. (2015) updated the competition dominance hierarchy from tree-shrub-grass (i.e., trees 
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dominate shrubs and grasses, and shrubs dominate grasses) to tree-grass-shrub, but still allowed shrubs and grasses to 

compete for sunshine and space. Some parameters were also updated in this process. In a North American study (Zhang et 

al., 2015) the SSiB4/TRIFFID reproduced the main ecosystem features of North America. Based on the North America 

experiment, we further distinguished deciduous/evergreen broadleaf trees as they form the land-cover in different latitudes 

and have distinctly different phenological features. The absence of deciduous broadleaf trees in SSiB4/TRIFFID caused an 5 

unrealistic lower summer LAI in the northeastern U.S. (Zhang et al., 2015). In addition, tundra was separated from the 

original single shrub category in order to better reflect the arctic biomes. To date, SSiB4/TRIFFID therefore includes 7 

PFTs:  1) Evergreen broadleaf trees, 2) Deciduous broadleaf trees, 3) Needle leaf broadleaf trees, 4) C3 grasses, 5) C4 plants, 

6) Shrubs, and 7) Tundra. 

2.2 Meteorological forcing data 10 

The Princeton global meteorological dataset for land surface modeling (Sheffield et al., 2006) was used to drive 

SSiB4/TRIFFID for the period of 1948-2007 at 1o x 1o spatial resolution and 3-hourly temporal interval. This dataset, 

including surface air temperature, pressure, specific humidity, wind speed, downward short-wave radiation flux, downward 

long-wave radiation flux, and precipitation, is constructed by combining a suite of global observation-based datasets with the 

National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis data. 	15 

2.3 Observation-based data 

The global land cover map products from the Global Land Cover (GLC) database for the year 2000 is produced by an 

international partnership of about 30 research groups coordinated by the European Commission’s Joint Research Centre 

(Bartholome et al., 2002). It is based on daily S1 data from the VEGETATION sensor on-board SPROT 4 acquired between 

1st November 1999 and 31st December 2000. This dataset provides a global map with one consistent legend, as well as 20 

regional maps with separate legends containing more detail for certain regions. For instance, tundra is not included in the 21-

category global legend but is included in the regional product for Northern Eurasia (Bartalev et al., 2003). In this study, we 

generated a GLC2000 dominance map for land cover validation according to the regional maps and the corresponding 

legends. Other than GLC2000, we also employed the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover 

data product (MCD12Q1) as a reference (Friedl et al., 2010).  25 

To access the climatology, variation, and trends of simulated LAI, two widely used LAI products were used as 

references in this study: the Global Inventory Modeling and Mapping Studies (GIMMS) LAI and the Global LAnd Surface 

Satellite (GLASS) LAI. GIMMS-LAI is based on the third generation of Normalized Difference Vegetation Index (NDVI3g) 

from the GIMMS group and an Artificial Neural Network model (Zhu et al., 2013). GIMMS-LAI provides a 1/12-degree 

resolution, 15-day composites, and spans the period July 1981 to December 2011. GLASS-LAI is generated from Advanced 30 

Very High Resolution Radiometer (AVHRR) (from 1982 to 1999 with 0.05-degree resolution) and MODIS (from 2000 to 

2012 with 1 km resolution) time-series reflectance data using general regression neural networks (Xiao et al., 2014). GIMMS 
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and GLASS LAI, and the meteorological forcing data for overlap period 1982 to 2007, were remapped to 1-degree spatial 

resolution and a monthly temporal interval. 

The Model Tree Ensemble (MTE) GPP product (Jung et al., 2009;Jung et al., 2011) was used as the reference to 

evaluate the GPP simulation. MTE is based-on a machine learning technique in which the model is trained to predict the 

carbon fluxes at FLUXNET sites driven by observed meteorological data, land cover data, and the remotely-sensed fraction 5 

of absorbed photosynthetic active radiation (Jung et al., 2009). Then the trained model is then applied at grid scale driven by 

gridded forcing data. MTE-GPP data was remapped to 1-degree spatial and a monthly temporal resolution. 

2.4 Experimental design 

In this study, SSiB4/TRIFFID was applied to produce the global vegetation distribution and assess the sensitivity of 

ecosystem trends to climate and eCO2. For this purpose, two sets of simulations were conducted: 1) a 100-year quasi-10 

equilibrium simulation driven by climatological forcing, and 2) sensitivity simulations driven by real-forcing from 1948-

2007 (Figure 1). In the first set, SSiB4/TRIFFID was driven with the climatological forcing and 1948 CO2 concentration to 

reach a steady state, which was used as the initial condition in the second set of simulations. Meanwhile, the effect of large-

scale disturbance (LSD) on restricting tree expansion to savanna areas was investigated. 

Using the quasi-equilibrium simulation results as the initial condition, the historical meteorological forcing and 15 

yearly updated CO2 concentration were used to drive SSiB4/TRIFFID from 1948 through 2007. In this control simulation, 

we firstly evaluated the model performance in reproducing the climatology and variability of multiple biotic variables in 

comparison with multiple observation-based datasets. The long-term trends were diagnosed before and after the climate 

regime shift of the 1980s. Furthermore, three sets of experiments were conducted to quantify the effects of external drivers 

(climate and CO2) and vegetation competition on the ecosystem trends. These experiments were designed as following: 20 

1. Fixed-CO2: The model was driven by the same meteorological forcing as the control experiment, but CO2 

concentration was fixed at the level of 1948 (310.33 ppm). The difference between control experiment and Fixed-

CO2 indicates the eCO2 effect.  

2. Detrend-Temp: The mean warming trend over each 10 degrees of latitude, from 1948 to 2007, was subtracted in 

this experiment. Then the detrended temperature along with other meteorological forcing and annually varying CO2 25 

concentration were used to drive the model. Subtraction of Detrend-Temp from the control experiment isolates the 

effect of global warming. 

3. Climate Variability: Subtraction of both Fixed-CO2 and Detrend-Temp from the control experiment was regarded as 

representing the effect of CV.   
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3. Vegetation initial conditions 

3.1 Quasi-equilibrium simulation 

DGVMs typically requires a number of state variables as an initial condition pertaining to a particular meteorological 

forcing. DGVMs commonly takes 50-1000 years' simulation to reach this steady-state (e.g. Bonan and Levis, 2006;Zeng et 

al., 2008). Since our purpose was only to generate the initial condition for the decadal simulations, we applied a shortcut to 5 

reach the quasi-equilibrium coexistence of PFTs under the climatological forcing. We started the model from a SSiB 1-

degree dominant vegetation map (Xue et al., 2004), with 100% occupation of the dominant PFT and zero for other PFTs. 

The 1948-2007 averaged meteorological forcing along with 1948 CO2 concentration was used to drive the SSiB4/TRIFFID 

for 100 years. 

SSiB4/TRIFFID is a water, energy, and carbon balanced model. Plants expansion, and biotic properties such as 10 

vegetation height and LAI are constrained by carbon reallocation. FRAC links the carbon accumulation within plants and 

intra-species competition via a system of Lotka-Volterra equations (Cox, 2001). Figure 2 shows the temporal evolution of 

FRAC during the quasi-equilibrium simulation over four general climate zones. In the early first ten years of the simulation, 

most PFTs' FRACs change rapidly, but then take decades to reach a steady state. To qualify the steady state, we define quasi-

equilibrium status as occurring when the rate of change of vegetation fraction is less than 2% of the mean vegetation 15 

fraction, over the last ten years of simulation. The result shows 100-year spin-up time is sufficient for our model.  

Overall, in the tropical areas (23.5°S~23.5°N), C4 plants and evergreen broadleaf trees are of mixed dominance and 

coexistent with C3 grasses, shrubs, and deciduous broadleaf trees. The subtropical areas (23.5°~35° in both hemispheres) are 

dominated by C3 grasses, C4 plants, and shrubs with similar occupation for each (~18%), whereas 40% of the subtropical 

areas are occupied by bare land. Needle leaf trees, C3 grasses, shrubs, and deciduous broadleaf trees are mix dominant the 20 

temperate zones (35°~66.5°, particularly in North Hemispheres). Over the polar areas (66.5°~90° in both hemispheres), 

shrubs and tundra are of mixed dominance (Figure 2). We recognize that these broad zones each incorporate many different 

PFTs that are not represented in our model. That being said, the broad distributions are very close to those based on the 

climatology of the global ecosystem simulated by the SSiB4/TRIFFID using the meteorological forcing from 1958-2007, 

which will be discussed in detail in Section 4.1.1 25 

3.2 Effect of large-scale disturbance 

Our preliminary quasi-equilibrium run showed that the absence of fire disturbance in SSiB4/TRIFFID causes trees’ 

extension into the South American and African savanna areas (Figure 3a), where the climate acting alone would seem to 

favors tree growth (Bond et al., 2005). However, disturbance alters the physical structure or arrangement of biotic elements 

quickly and with great effect. Major ecological disturbances such as fire, flooding, and insect outbreaks vary spatially and 30 

temporally. TRIFFID prescribes the large-scale disturbance (LSD) coefficient as a uniform value for every PFT globally 

according to model calibration (Cox, 2001). We raised the LSD coefficient (largely representing fire at this scale) from 0.004 
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to 0.04 for tree PFTs that coexist with C3 grasses and C4 plants. With the updated setting, SSiB4/TRIFFID produced 

reasonable dominant tree coverage over the tropical rainforest areas (Figure 3b) in comparison with the GLC2000 dataset. 

The global PFT distributions in the equilibrium run are close to the results using the real meteorological forcing. Detailed 

comparison of the simulated global vegetation spatial distribution with the contemporary satellite-based datasets is discussed 

in Section 4, in which the model was driven by the 1948-2007 meteorological forcing. 5 

4. Simulation results using the 1948-2007 meteorological forcing 

Based on the equilibrium run as initial condition for both biotic and abiotic variables such as FRAC, LAI, vegetation height, 

soil moisture, and temperature, the model was then driven with the historical meteorological forcing and yearly updating 

CO2 concentration from 1948 to 2007. DGVMs have shown diverse performance in reproducing the spatial distribution and 

temporal variability of the ecosystems (Murray-Tortarolo et al., 2013;Piao et al., 2013;Anav et al., 2015;Zhu et al., 2017), 10 

which resulted in large discrepancies between models in identifying the attributed dominant drivers of changes (Beer et al., 

2010;Huntzinger et al., 2017). It is therefore important to validate the model performance first before use for attribution 

studies. In this section, the global (hereafter referring to the regions of 180oW to 180oE, 60oS to 75oN) distributions of the 

simulated FRAC, LAI, and GPP are compared to the observation-based datasets. LAI and GPP inter-annual variabilities are 

also evaluated over several regions, showing large ecosystem variability and changes. 15 

4.1 Assessment of the simulated vegetation spatial distribution 

It is a challenge for DGVMs to reproduce PFT coexistence, particularly for the smaller PFTs in the semi-humid to semi-arid 

areas as they are fragile and sensitive to climate and vulnerable to competition (Fu et al., 2006). For instance, Zeng et al. 

(2008) introduced a specific sub-model to grow the trees and grasses firstly, then shrubs in unoccupied spaces. However, 

recent studies suggest that the interannual variability of the global terrestrial carbon sink is dominated by semi-arid 20 

ecosystems (Ahlstrom et al., 2015). The SSiB4/TRIFFID allows smaller stature PFTs to co-exist (Cox, 2001;Zhang et al., 

2015). 

4.1.1 Global Vegetation distribution 

The spatial distribution of the dominant PFT is closely related to large-scale the climate (MacDonald, 2002). Figure 4 shows 

the FRAC for each PFT from the control experiment averaged over the last ten years of the run (1998-2007). Overall, the 25 

model simulated vegetated land cover of 77.7% of the global land surface, close to the GLC2000 estimation, 76.0%, and 

higher than the MODIS estimation, 73.8%. There was no human activity included in the model simulation, as such an 

agricultural category was not included. Therefore, in the following vegetation coverage comparison with the GLC products, 

PFT coverage in the gridboxes with agriculture was reduced by multiplying the agriculture fraction.  On this basis, the total 

simulated tree cover (the sum of evergreen broadleaf trees, deciduous broadleaf trees, and needle leaf trees) was 25.0%, 30 
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close to 24.6% in GLC2000. The evergreen broadleaf trees in the Amazon, Central Africa, and Southeast Asia, deciduous 

broadleaf trees in southeast North America, and needle leaf trees in the high-mid latitudes of North America and Eurasia 

were reasonably predicted (Figure 4-5). SSiB4/TRIFFID predicted 12.1% C3 grass occupation, which is slightly lower than 

12.5% in the GLC2000, with reasonably simulation in the mid-latitudes in both hemispheres such as the central U.S., 

Eurasian Steppes, South America, South and East Africa, and East Australia (Figure 5). The model predicted 9.8% natural 5 

C4 plants, compared to 8.3% in the GLC2000. The discrepancy could be partially attributed to the absence of C4 plants in 

some GLC2000 regional maps (such as Southeast Asia).  The global GLC2000 map is assembled from these regional maps. 

In fact, a satellite-based physiological model simulation predicted 13.9% of C4 plants coverage with no agriculture category 

(Still et al., 2003). In the SSiB4/TRIFFID prediction without excluding agricultural land, the C4 plants cover 13.2%, close to 

Still et al’s estimation. C4 plants are primarily located in South American and African savanna areas, the Indian 10 

Subcontinent, Southeast Asia, the southeastern U.S., and northern Australia. The model predicted 15.6% shrubs and tundra 

occupation, which was close to 15.4% in the GLC2000, with shrubs primarily located in the semi-arid areas in both 

hemispheres and the pan-arctic area, while tundra was located in the pan-arctic area and Tibetan Plateau. 

4.1.2 Leaf area index and Gross Primary productivity 

This section discusses the spatial and temporal correlations between the simulations and observations and compares with 15 

other model results.  Since other published studies on this subject have not excluded agricultural areas, to make our results 

comparable with others, the agricultural areas were not subtracted.  Moreover, the difference between the results presented in 

this section and those excluding the agriculture area are less than 0.01. 

SSiB4/TRIFFID produced a similar global LAI pattern compared to both the GIMMS and GLASS products, 

confirmed by global spatial correlation coefficients of 0.86 (GIMMS, p<0.05) and 0.87 (GLASS, p<0.05), and above 0.74 20 

(P<0.05) against both observations over the Northern Hemisphere (Figure 6). Previous studies reported spatial correlation 

coefficients between models and GIMSS-LAI over the globe/Northern Hemisphere in the range of 0.44-0.77/0.21-0.61 

(Murray-Tortarolo et al., 2013;Mahowald et al., 2015). The latter study reported that in general DGVMs tended to 

overestimate global average LAI by 0.69±0.44 units [recalculated from (Mahowald et al., 2015)]. SSiB4/TRIFFID produced 

~0.95 units higher global averaged LAI than the satellite-based data. The absence of nitrogen limitation in the model could 25 

contribute to the overestimation and the latest development of SSiB5/TRIFFID with a global nitrogen model seems 

promising. 

The spatial correlation coefficient between our simulation of GPP and the MTE dataset is 0.93 (P<0.05) (Figure 7). 

Anav et al. (2015) reported less than 0.8 correlation against MTE-GPP for multi-model comparison. Over the globe, 

SSiB4/TRIFFID predicted 1135 gC/m2/yr (or 151 PgC/yr), greater than the MTE average of 920 gC/m2/yr (or 122 PgC/yr). 30 

However, our simulation was in the range of 130-169 PgC/yr reported by Anav et al. (2015) and 111-151 PgC/yr reported by 

Piao et al. (2013) for 10 offline models. In addition, to our model’s deficiencies (such as lack on N-limitation), the lack of 

CO2 fertilization during MTE model training may have contributed to an underestimation in MTE-GPP. 
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4.2 Assessment of the simulated vegetation temporal variability 

Model performance in predicting temporal variability has been less evaluated in previous studies on ecosystem trend 

detection and attribution (e.g. Ichii et al., 2013;Piao et al., 2013;Zhang et al., 2015). However, performance in predicting LAI 

and GPP trends and variability has been found to vary among models (Murray-Tortarolo et al., 2013;Piao et al., 2013;Anav 

et al., 2015;Zhu et al., 2017). To better assess model performance in this regard, we selected 13 sub-regions associated with 5 

different regional climate and land cover conditions (Table 1). Although the MTE excludes CO2 fertilization during its 

model training, MTE-GPP still incorporates variability at different scales associated with climate variability and is widely 

used by the community for the model validation. Both annual LAI and GPP correlation coefficients were calculated over the 

period of 1982-2007. 

Globally, the correlations for annual mean LAI between the SSiB4/TRIFFID and the satellite-based products were 10 

0.58 (P<0.05) for GIMMS and 0.64 (P<0.05) for GLASS. The correlation for annual GPP was 0.59 (P<0.05) between the 

SSiB4/TRIFFID and MTE GPP. Piao et al. (2013) had reported less than 0.4 correlation by for GPP from 10 offline-models. 

This improvement may be due to SSiB4/TRIFFID better capturing the interannual variability in semi-arid areas which 

dominate interannual variability (Ahlstrom et al., 2015). For instance, LAI correlations over West Africa were 0.79 (P<0.05) 

with GIMMS and 0.77 (P<0.05) with GLASS (Figure 8), and GPP correlation was 0.80 (P<0.05) with MTE in that region. 15 

For the other semi-arid areas in western North America, South American savanna areas, and East Africa, the simulated LAI 

significantly matches at least one of the two reference datasets with correlation in the range of 0.46-0.58 (P<0.05). The 

simulated GPP correlations with MTE were in the range of 0.63-0.70 (P<0.05).  

For the forested areas, simulated LAI and GPP were both well correlated with reference data over the Northern 

Hemisphere boreal forests, whereas only LAI had significant correlation over the rainforest areas. The inconsistency over the 20 

rainforests indicated that the missing CO2 fertilization in MTE-GPP could be a predominant limitation to GPP in those areas. 

Over the cold regions (subarctic and Tibetan Plateau), SSiB4/TRIFFID matched the reference data closely with the 

significant correlations ranging 0.35-0.74 (P<0.1) for LAI and 0.49-0.72 (P<0.05) for GPP. It should be pointed out that 

although there is general consistency between the satellite-based LAI products, large relative uncertainties were identified 

(Jiang et al., 2017).  25 

As shown in Figure 8, there were distinct decadal variabilities in most sub-regions. For instance, trends reversal 

sign in West Africa (from negative to positive) and western North America (from positive to negative). Areas with 

enhancement in trends slopes, such as the subarctic after the 1980s climate regime shift, will be discussed in detail in the 

next section. 

Summary, statistics are listed in Table 2. Generally, SSiB4/TRIFFID presented reasonable predictions of terrestrial 30 

ecosystem climatology and variability compared to the observation-based datasets. Compared to other DGVMs, 

SSiB4/TRIFFID showed above average performance in reproducing the spatial distribution, but with certain bias in absolute 
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numbers. In particular, SSiB4/TRIFFID captured the ecosystem variabilities over different regions across the world, which 

provides a good basis for pursuing the ecosystem trends detection and attribution study presented in the next section. 

5. Detection and attribution of decadal trend change during the 1980s 

There are a number of studies showing abrupt environmental change during the 1980s (e.g. Hare and Mantua, 2000;Lo and 

Hsu, 2010;Reid et al., 2016). Since the 1950s, global land surface temperature has risen with the rate of increase accelerating 5 

after the 1980s (Figure 9). The mean land surface temperature during the three decades of the 1950s, 1980s, and 2000s was 

286.84 K, 286.97 K, and 287.65 K, respectively. Global precipitation had shown distinct decadal variability.  It decreased 

from 2.34 mm/day in the 1950s to 2.28 mm/day in the 1980s, then recovered to 2.33 mm/day in the 2000s. In the meantime, 

the atmospheric CO2 concentration steadily increased from 313.44 ppm in the 1950s to 373.67 ppm in the 2000s. In this 

section, we will discuss how the changing climate and eCO2 affected the large-scale vegetation. The sensitivity experiments 10 

described in section 2.1 were conducted to quantify the contributions of eCO2, global warming, and CV on the trends of 

FRAC, LAI, and GPP at global and regional scales and on PFT variation and competition.  The first ten-years of each 

simulation (1948-1957) were excluded from the analysis as this served as the spin up period. 

5.1 Three major types of trend change since the 1950s 

The climate regime including temperature and precipitation shifted abruptly during the 1980s, inevitably giving rise to 15 

changing ecosystem trends in many parts of the world. Here we compare trends of FRAC, LAI, and GPP over two periods: 

1958-1982 and 1982-2007. The model performance for the second period, for which satellite observations are available, was 

evaluated in Section 4. Spatial patterns of the trends are shown in Figure 10, in which the dots indicate the grid points with a 

p-value less than 0.1 according to a Mann-Kendal test (Mann, 1945;Kendall, 1955).  

At the global scale, significant vegetation trends were only found in the simulations after the 1980s. During this 20 

period, FRAC increased at the rate of 0.032/yr. LAI had a positive trend of 0.0029/yr, which matched very well to GIMMS’ 

results (0.0029/yr). GPP had a positive trend of 2.22 gC/m2/yr2, within the range of 1.60-4.69 gC/m2/yr2 for GPP over similar 

periods (e.g. Anav et al., 2015;Yue et al., 2015).  In contrast to LAI and GPP, there were relatively few areas with a 

significant simulated FRAC trend. 

For the global land surface, over 40.2% had a significant LAI trend since 1958, and over 48.1% had a significant 25 

GPP trend. In response to the climate regime shift during the 1980s, the terrestrial ecosystem had three major trend changes 

in different parts of the world after the 1980s (Table 3). 1) There was trend sign reversal from negative to positive in the 

East Asian monsoon area, West Africa, Central Asia, and Eastern US, over 14.2% (LAI) and 11.4% (GPP) of the land 

surface. In particular, West Africa experienced the largest vegetation deterioration in the world before the 1980s, associated 

with LAI and GPP reductions of 0.0258/yr and 18.54 gC/m2/yr2, respectively - approximately 10 times the trends of the 30 

global average. After the 1980s, recovery is simulated at the rate of 0.0137/yr and 8.02 gC/m2/yr2 for LAI and GPP, 
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respectively. 2) Trend sign reversal from positive to negative was found in western North America, South America savanna 

and East Africa, which accounted for 2.9% (LAI) and 2.7% (GPP) of the land surface. 3) There were consistent positive 

trends substantially enhanced by at least 50% of prior period trends after the 1980s, which were found in Equatorial 

rainforest areas, boreal forest areas, South Africa, North Australia, subarctic areas, and the Tibetan Plateau, representing over 

11.7% (LAI) and 19.3% (GPP) of the land surface. There were also areas with consistent positive trends but no substantial 5 

change during the entire period or other types of trend change over much smaller areas. The first three major trend changes 

as described above will be discussed in the following sections.  

5.2 Global overview of three simulated external forcing effects on the ecosystem trends 

The differences between the control experiment and Fixed-CO2 shows that eCO2 stimulated vegetation growth mainly in the 

Equatorial areas and eastern North America, Western Europe, and Eastern China in the mid-latitudes. Substantially enhanced 10 

positive trends were found after the 1980s for both LAI and GPP over those areas (Figure 11). eCO2 promoted rainforest 

LAI increase only after the 1980s; however, its effect on GPP appeared during the entire period. GPP was directly linked to 

CO2 through the photosynthesis process, while LAI, in addition to the photosynthesis process, was also affected by 

respiration and carbon reallocation in plants, which were influenced by climate and eCO2 (O'Sullivan O et al., 2017). 

The differences between the control experiment and Detrend-Temp shows that global warming had minor effects on 15 

the trends of LAI and GPP before the 1980s (Figure 12). After the 1980s, the rapidly enhanced warming contributed 

positive LAI trends at high latitudes, while the GPP change seems less substantial. Meanwhile, there were negative trends 

due to heat stress in low latitudes, particularly in the semi-arid regions such as South American savanna, East Africa, and 

central Asia. 

The differences between the control experiment and Fixed-CO2 and Detrend-Temp show the CV effect, which has 20 

complex influences on the ecosystem. The CV in this study includes contribution of changes in surface pressure, 

precipitation, surface wind speed, downward longwave and shortwave radiations, surface humidity, along with temperature 

that exclude the trend. Precipitation was however found to play a dominant role.  The correlation coefficients between the 

annual mean CV effect on LAI and GPP and annual mean precipitation at the grid points with significant CV effect were 

greater than 0.60 (P<0.05). Overall, the CV effect alone can explain the total FRAC trends in the control experiment (Figure 25 

13).  

Before the 1980s, CV caused LAI decrease in East Asian monsoon areas, eastern North America, West Africa, 

Western Europe, Central Asia, Siberia, and eastern Australia. The GPP also decreased in these areas except for eastern North 

America, Western Europe, and Siberia. In contrast, the CV effect before the 1980s led LAI and GPP increase in the Tibetan 

Plateau and South Asia, western North America, South American savanna areas, East and South Africa, and northern 30 

Australia. Due to the climate regime shift, CV had produced the opposite sign to the trends of LAI and GPP in East Asian 

monsoon areas, Central Asia, West Africa, North America, South American savanna areas, and East Africa. In some areas, 
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such as South Africa and northern Australia, persistent precipitation increase/decrease led to sustained positive/negative 

trends from the 1950s. 

Overall, after the 1980s, the effects of eCO2 and global warming have been generally enhanced; but the CV effect 

has exhibited distinctly different regional features before/after the 1980s over many regions in the world.  

5.3 Assessments of synthesized effects of the three external forcings in influencing the regional ecosystem trends 5 

The discussion in this section is based on Tables 3 and 4 and Figure 14. Only the significant changes listed in the tables are 

discussed and the following text is restricted to a subset of world regions – West Africa and East Asia; western North 

America, and rainforest, boreal forest, subarctic and Tibetan Plateau. 

5.3.1 Dominant factor in influencing trend reversal from negative to positive in West Africa and East Asia 

CV was found to be the dominant driver of the ecosystem trends in West Africa, explaining most of the LAI and GPP trends 10 

and trend changes. Before the 1980s, CV caused C4 plants’ LAI, GPP, and FRAC over the region to decrease, followed by 

shrubs, whereas eCO2 caused C3 grasses’ LAI and GPP to slightly increase. Global warming showed little effect during the 

entire period from 1958-2007. The ecosystem trends in West Africa reversed to increase when the precipitation trend 

changed to increase after the 1980s, with the major increase in C3 grasses and shrubs over the region. A previous study using 

satellite data also showed recent West Africa greening was highly correlated to the precipitation increase (e.g. Herrmann et 15 

al., 2005). The response to eCO2 of a particular PFT not only depends on its own physiological and morphological 

characteristics, but is also determined by the interactions that arise with the other PFTs, which are competing for the same 

resources. eCO2 played a role in increasing C3 grasses coverage since the 1950s. However, the PFT competition outcomes 

reduced the C4 plant coverage over the region, mainly after the 1980s when eCO2 had a large impact. As such, the change in 

regional FRAC overall within West Africa is not significant and has been compromised by positive and negative 20 

contributions of the individual PFTs after the 1980s.  However, our results show that the boundary between Sahara and Sahel 

has experienced significant variation since the 1950s.  Based on the observed precipitation data and the precipitation/NDVI 

correlation, Thomas and Nigam (2018) suggest a Sahara Desert expansion since the 1950s.  Our results are in an agreement 

at large with the Thomas and Nigam’s study (2018) but also with substantial differences.   A comprehensive discussion on 

this issue is out of scope of this paper and will be addressed in a separate paper.  25 

Regional average trends reversed in the East Asian monsoon area because CV and eCO2 dominated LAI and GPP 

trends, before and after the 1980s, respectively.  Their combined effects caused trend reversal in the East Asian monsoon 

areas. The eCO2 dominated the PFT LAI and GPP trends since the 1950s, which caused significant increase in C3 grasses 

and trees but significant decrease in C4 plants (Figure 14). Field experiments reported that the differential growth and 

competitiveness responses of C3 and C4 plants to eCO2 is complex and under debate (Lee, 2011;Miri et al., 2012;Leakey et 30 

al., 2009). Our simulations suggest that there is a potential increase C3 grasses long-term competitive ability at regional 

scale. Meanwhile, enhanced global warming after the 1980s stimulated C4 plant growth, but this effect was compromised by 
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its detrimental effect on C3 grasses after the 1980s.  Furthermore, CV contributed decreasing trends of LAI and GPP before 

the 1980s, but with minor effects after the 1980s.  Overall, CV and eCO2 dominated the negative and positive trends in this 

area before and after the 1980s, respectively. 

5.3.2 Dominant factor in influencing trend reversal from positive to negative in western North America  

The eCO2 effect persistently caused LAI, GPP, and FRAC increase since the 1950s, while global warming reduced both LAI 5 

and GPP only after the 1980s. However, CV dominated the LAI and GPP trends and trends reversal in western North 

America by causing the dominant PFTs (C3 grasses and shrubs) to increase/decrease before/after the 1980s (Figure 14 and 

Table 4). The CV effect on FRAC change was more complex due to its different effects on LAI and GPP and FRAC 

expansion in C3 and shrub PFTs after the 1980s (Figure 14): both C3 and shrubs expanded with LAI and GPP decrease. 

This discrepancy suggests that expansion might be coupled with carbon fixation less than with growth in the model. We 10 

conjecture that CV may promote vegetation expansion into some areas that were largely unvegetated, but this requires 

further investigation. 

5.3.3 Dominant factor in influencing the enhanced positive trend in rainforest, boreal forest, subarctic, and Tibetan 
Plateau  

eCO2 and CV had persistent positive impacts on rainforest growth in terms of LAI and GPP since the 1950s (Figure 14). 15 

eCO2 dominated the LAI and GPP trends in both periods except for the LAI positive trend before the 1980s, which was 

dominated by CV. LAI trend enhancement after the 1980s was associated with increased CO2 fertilization, while GPP trend 

enhancement was attributed to increase in both eCO2 and CV effects (Table 4). The importance of CO2 and CV impacts on 

the rainforests was confirmed by previous analyses on the trends of LAI and NDVI (e.g. Hilker et al., 2014;Zhu et al., 2016).  

eCO2 and global warming increased LAI and GPP in North American boreal forest areas since the 1950s and 20 

caused significant positive trends over the Eurasian boreal forest area after the 1980s (Table 4). However, due to CV-

induced negative effects on tree LAI, no significant trend was found in regional average LAI in boreal areas before the 1980s 

(Figure 14). The LAI and GPP trend enhancement in the boreal forest areas can be attributed to the enhanced eCO2 and 

global warming effects, accompanied by reduced CV negative effects after the 1980s. 

North American subarctic areas had enhanced LAI and GPP positive trends after the 1980s, which were caused by 25 

the increase in eCO2 and CV positive effects. All three external forcings had effects on LAI and GPP positive trends in the 

Eurasian subarctic (Figure 14 and Table 4). Meanwhile, remarkable FRAC changes were found since the 1950s. Our 

simulation suggested that global warming continually favorited shrub invasion into tundra biomes, except in the Eurasian 

subarctic before the 1980s (Figure 14). After the 1980s, this shrubification was enhanced due to increase in the warming 

effect. In contrast, eCO2 has promoted tundra expansion and shrub decline over subarctic areas since the 1950s, which 30 

mitigated the shrubification. Meanwhile, CV played a role to help tree and C3 grass expansion into subarctic areas, and also 

altered the shrub and tundra competition. Observations had supported our conclusion that shrub expansion into tundra 
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ecosystems was linked to climate change (e.g. Myers-Smith et al., 2015), particularly to global warming (e.g. Tape et al., 

2006;Elmendorf et al., 2012) and precipitation (e.g. Martin et al., 2017). 

Over the Tibetan Plateau, CV dominated the positive LAI and GPP trends since the 1950s, excepted in the case of 

the GPP increase before the 1980s which was dominated by eCO2. The positive trend enhancements for LAI and GPP after 

the 1980s were caused by the impact of both eCO2 and CV. Furthermore, our simulation also suggested that CV favored C3 5 

grasses but harmed tundra biome expansion. However, eCO2 had the opposite effects on those PFTs, in contrast to the CV’s. 

6. Conclusion 

This work employs a biophysical-dynamic vegetation model (SSiB4/TRIFFID) to explore the responses of the terrestrial 

ecosystem to the climate variability and elevated atmospheric CO2 concentration during 1948-2007. The SSiB4/TRIFFID is 

evaluated by available satellite data in simulating the land surface carbon fixation, and plant growth and competition. The 10 

results show SSiB4/TRIFFID captures the vegetation distribution (spatial correlation larger than 0.87) and temporal 

variability (regional varying significant temporal correlations of 0.34-0.80 for LAI and 0.45-0.83 for GPP). A series of 

sensitivity experiments were then conducted to detect the ecosystem trends and attribute the trends to elevated atmospheric 

CO2 concentration (eCO2), global warming, and climate variability (CV). 

In general, eCO2 stimulates vegetation growth mainly in the Equatorial areas, and eastern North America, Western 15 

Europe, and Eastern China in the mid-latitudes. The rapidly enhanced global warming after the 1980s contributes positive 

LAI trends at high latitude, while the GPP change seems less substantial; meanwhile, there were negative trends due to the 

heat stress in low latitudes.  CV dominates the variability of FRAC, LAI and GPP in the semi-humid and semi-arid areas. 

The effects of the external drivers on the ecosystem trends manifest distinct spatial and temporal characteristics. For 

the global land surface, over 40.2% had a significant LAI trend and over 48.1% had a significant GPP trend since the 1950s. 20 

In responding to the climate regime shift during the 1980s, the terrestrial ecosystem had three major changes in different 

parts of the world after the 1980s. Over 14.2% (LAI) and 11.4% (GPP) of the land surface, primarily located in East Asian 

monsoon area, West Africa, Central Asia, and Eastern US, had trend sign reversal from negative to positive. In contrast, 

trend reversal form positive to negative was found in western North America, South America savanna and East Africa, 

which accounted for 2.9% (LAI) and 2.7% (GPP) of the land surface. Meanwhile, there were consistent positive trends 25 

substantially enhanced in Equatorial rainforest areas, boreal forest areas, South Africa, North Australia, subarctic areas, and 

the Tibetan Plateau, representing over 11.7% (LAI) and 19.3% (GPP) of the land surface, respectively. 

Data availability 

The data for this paper are available at https://drive.google.com/file/d/1CGlO-x-gSXTH8UNB_KWoH_Y53fK-
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Figure 1. Experimental design flowchart 
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Figure 2. Fractional coverage of each plant functional type in typical climate zones in the equilibrium experiment 
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Figure 3. Tree dominated areas of a) unchanged large-scale disturbance experiment, b) parameter updated experiment and c) 
GLC2000  
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Figure 4. 1998-2007 average vegetation fractional coverage distribution for different land cover types 
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Figure 5. Dominant vegetation type comparison between a) GLC2000 and b) SSiB4/TRIFFID, and c) Region definitions.  
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Figure 6. 1982-2007 average leaf area index comparison for a) GIMMS LAI, b) GLASS LAI, and c) SSiB4/TRIFFID simulated 
LAI. SCC indicates the spatial correlation coefficient between model simulation and satellite-derived datasets. 
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Figure 7. 1982-2007 average gross primary product comparison for a) MTE GPP, and b) SSiB4/TRIFFID simulated GPP. SCC 
indicates the spatial correlation coefficient. 
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Figure 8. Comparison of standardized LAI anomalies between simulation and observations for sub-regions. Corr indicates the 
interannual correlation coefficient simulated LAI against the GIMMS (in blue) and the GLASS (in green). Only significant values 
(P<0.1) are shown, whereas non-significant values are masked by xxx  
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Figure 9. Global averaged atmosphere CO2 concentration (black solid line), temperature (red solid line), and precipitation (blue 
solid line). The dashed lines show the average of 1951-1960, 1977-1986, and 1998-2007, separately 
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Figure 10. Trends (shaded) of a) and b) Fractional coverage (units: %/yr), c) and d) LAI (units: 10-3/yr), e) and f) GPP (units: 
gC/m2/yr2). The left three panels are for 1958-1982 and the right three panels are for 1982-2007. The dots indicate the areas with 
significance level at P< 0.1 (Mann-Kendall test).  
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Figure 11. CO2 effect on the trends (shaded) of a) and b) LAI (units: 10-3/yr), and c) and d) GPP (units: gC/m2/yr2). The left two 
panels are for 1958-1982 and the right two panels are for 1982-2007. The dots indicate the areas with significance level at P<0.1 
(Mann-Kendall test).  
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Figure 12. Same as Figure 11, but for warming effect. 
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Figure 13. Same as Figure 11, but for climate viability effect and also including the effects on fractional coverage (units: %/yr) 
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Figure 14. Contribution of each factor on FRAC (denoted as “F”), LAI (denoted as “L”), and GPP (denoted as “G”) trend over 
sub-regions. The upper panel in each figure is for trends during 1951-1982 and the lower panel is for trends during 1982-2007. The 
effects of eCO2, global warming and CV are shown in green, red, and blue bars, separately. Each column shows the effects on all 
PFTs (All), trees, C3 grass (C3), C4 plant (C4), shrub, and tundra, separately. The numbers for FRAC, LAI, and GPP are 5 
normalized by dividing the standard deviation of global average in the control experiment. 
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Table 1. Location for study areas 

Regions Sub-regions Location 

Arid and Semi-Arid Areas West Africa 8°N~16°N, 18°W~22°E 

Western North America 25°N~50°N, 120°W~100°W 

South American savanna 12°S~5°S, 50°W~35°W 

East Africa 15°S~5°N, 32°E~42°E 

Monsoon Area East Asian monsoon area 20°N~40°N, 110°E~125°E 

Northern Hemisphere 

boreal areas 

North America boreal 50°N~60°N, 125°W~60°W 

Eurasian boreal 54°N~65°N, 10°E~120°E 

Equator areas Amazon basin 8°S~6°N, 73°W~52°W 

Southeast Asia 10°S~10°N, 95°E~150°E 

Equator Africa 3°S~5°N, 10°E~30°E 

Subarctic areas North American subarctic 60°N~75°N, 170°W~60°W 

Eurasian subarctic 65°N~75N, 60°E~180°E 

Tibetan Plateau Tibetan Plateau 28°N~38°N, 80°E~105°E 
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Table 2. Statistics for the comparison between SSiB4/TRIFFID simulated and observation-based LAI and GPP 

Regions Sub-regions 

LAI Mean 
(m2/m2) 

LAI TCC GPP Mean 
(gC/m2/yr) 

GPP TCC 

GIMMS GLASS SSiB4/ 
TRIFFID 

GLASS GLASS MTE SSiB4/ 
TRIFFID 

MTE 

Arid and 
Semi-Arid 
Areas 

West Africa 0.92 0.86 1.75 0.80** 0.79** 759.97 970.82 0.80** 

Western North 
America 

0.57 0.46 1.27 0.58**  404.65 520.91 0.70** 

South American 
savanna 

1.85 1.82 3.27 0.57** 0.54** 1615.28 1823.22 0.65** 

East Africa 1.49 1.38 2.95 0.46**  1188.67 1487.25 0.63** 

Monsoon 
Area 

East Asian monsoon 
area 

1.59 1.31 3.58 0.61** 0.48** 1402.44 1503.18 0.51** 

Northern 
Hemisphere 
boreal areas 

North America 
boreal 

0.80 0.91 1.94  0.34* 544.45 867.94 0.83** 

Eurasian boreal 1.15 1.26 2.46 0.52**  857.16 1036.47 0.70** 

Equator 
areas 

Amazon basin 4.18 4.28 6.15 0.38* 0.50** 2992.29 2820.73  
Southeast Asia 4.00 3.16 4.82  0.38* 2792.95 2628.02  

Equator Africa 3.86 3.48 6.09 0.36* 0.70** 2535.6 2833.9  

Subarctic 
areas 

North American 
subarctic 

0.37 0.38 0.78 0.46** 0.35* 256.46 438.18 0.72** 

Eurasian subarctic 0.35 0.44 0.92 0.71**  345.82 539.41 0.64** 

Tibetan 
Plateau 

Tibetan Plateau 0.52 0.43 1.29 0.58** 0.74** 323.12 546.2 0.49** 

Note: * indicates the p<0.1 and ** indicates the p<0.05 
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Table 3. Linear trend of vegetation FRAC, LAI and GPP changes during P1 (1958-1982) and P2 (1982-2007) in sub-regions (1) 

Regions Var. Total Trees C3 grass C4 plant Shrub Tundra 
P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 

West Africa FRAC -4.14       0.96 0.99 -4.33 -1.71 -0.96 1.1     
LAI -2.58 1.37   0.28 0.43 -1.9  -0.79 0.8   
GPP -18.54 8.02 -0.84 0.86 0.92 1.9 -14.09   -4.53 4.49     

East Asian 
Monsoon area 

FRAC     0.51 0.56 1.19 1.72 -2.49 -2.6 0.63       
LAI -0.34 0.43  0.44 0.34 0.76 -0.9 -0.83     
GPP -1.61 2.39 0.84 2.17 1.06 3.51 -4.35 -3.73 0.84 0.44     

Western 
North 
America 

FRAC 1.34 1.38     2.18 0.83 -0.48 -0.38   0.96     
LAI 0.96 -0.58   0.65 -0.23   0.34    
GPP 5.66 -2.73 1.02 -0.74 2.76 -1.12   -0.42 1.95       

Amazon basin FRAC       0.37                 
LAI 0.57 0.66 0.61 0.74         
GPP 3.49 8.7 4.08 8.93     -0.67 -0.39         

North 
American 
boreal 

FRAC   0.36     0.4           -0.34   
LAI  0.25           
GPP 1.77 2.2 1.17 1.41 0.64             0.33 

Eurasian 
boreal 

FRAC   0.29     0.37 0.37             
LAI  0.33  0.23         
GPP 1.58 2.17 1.42 1.61 0.35 0.58             

North 
American 
subarctic 

FRAC 0.35 0.69 0.16 0.18 0.51       0.46 0.88 -0.76 -0.29  
LAI  0.23           
GPP 1.33 1.47 0.43 0.35 0.34       0.32 0.59   0.5 

Eurasian 
subarctic 

FRAC   0.59 0.29 0.39 0.58 0.20      -1.02       
LAI  0.35           
GPP 1.42 2.97 0.52 0.85 0.36         0.56 0.69 1.31 

Tibetan 
Plateau 

FRAC 0.83 0.32     4.51       -0.44   -3.26   
LAI 0.2 0.39   0.48        
GPP 0.68 2.61   0.78 1.9 0.98         -1.14 0.93 

(1) Only significant values (P<0.1 in Mann-Kendall test) are shown, positive trends are in bold. Numbers are scaled by 

multiplying 10 for FRAC and 1000 for LAI. 
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Table 4. Climate drivers and eCO2 effect on the trends of FRAC, LAI and GPP during P1 (1958-1982) and P2 (1982-2007) in sub-
regions regarding to their regional average (1)(2) 

Regions Var. Total Elevated CO2 
concentration 

Global 
warming 

Climate 
variability 

P1 P2 P1 P2 P1 P2 P1 P2 
West Africa FRAC -0.51      -0.51 0.14 

LAI -1.47 0.78 0.10 0.12 -0.05 -0.13 -1.52 0.80 
GPP -1.91 0.83 0.07 0.12 -0.05 -0.13 -1.94 0.83 

East Asian 
Monsoon area 

FRAC                 
LAI -0.10 0.12 0.05 0.10   -0.16  
GPP -0.11 0.16 0.10 0.16   -0.06 -0.21 0.06 

Western North 
America 

FRAC 0.18 0.18 0.07 0.10     0.09 0.12 
LAI 0.75 -0.45 0.11 0.14  -0.14 0.64 -0.46 
GPP 1.09 -0.52 0.22 0.23   -0.19 0.88 -0.56 

Amazon basin FRAC                 
LAI 0.09 0.11 0.03 0.07   0.06 0.06 
GPP 0.12 0.31 0.13 0.19       0.14 

North American 
boreal 

FRAC   0.04             
LAI  0.13 0.05 0.10 0.06 0.10 -0.14 -0.07 
GPP 0.20 0.25 0.14 0.20 0.08 0.14   -0.08 

Eurasian boreal FRAC   0.03             
LAI  0.13  0.10  0.10 -0.11 -0.06 
GPP 0.15 0.21 0.13 0.18  0.11   -0.09 

North American 
subarctic 

FRAC 0.05 0.09       -0.06   0.13 
LAI  0.30 0.07 0.10   0.09 0.25 
GPP 0.30 0.34 0.17 0.24   -0.12 0.12 0.22 

Eurasian 
subarctic 

FRAC   0.06           0.05 
LAI  0.39 0.07 0.10  0.11  0.18 
GPP 0.26 0.55 0.17 0.25 0.06 0.13   0.18 

Tibetan Plateau FRAC 0.12 0.04          0.10   
LAI 0.16 0.31     0.17 0.28 
GPP 0.13 0.48 0.12 0.21       0.26 

(1)  percentage trend for FRAC: 𝑇𝑟𝑒𝑛𝑑&'()/(𝑔𝑟𝑖𝑑	𝑡𝑜𝑡𝑎𝑙	𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑒𝑑	𝐹𝑅𝐴𝐶) ∗ 100% 
     percentage trend for LAI and GPP: 𝑇𝑟𝑒𝑛𝑑=>?/(𝑔𝑟𝑖𝑑	𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑) ∗ 100%, where var stands for LAI or GPP. Units for all 
three variables are %/yr 5 
(2) Only significant values (P<0.1 in Mann-Kendall test) are shown, positive trends are in bold 
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